

PSI muon beam lines and future developments

Angela Papa, Paul Scherrer Institut and University of Pisa/INFN On behalf of the HiMB and muCool group Snowmass Committee meeting, New accelerator concepts for high intensity muon beams session (virtual meeting) **SCM 2020, Oct 5th - Oct 8th**

Outline

- The High Intensity Muon Beam project at PSI (HiMB)
- Towards High-Brigthness low energy muon beams (muCool)

HiMB motivations

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Time schedule: O(2025)
- PSI delivers the highest intensity DC μ^+ beam: $5 \times 10^8 \ \mu^+/s$
- · Next generation cLFV experiments require higher muon rates
- New opportunities for future muon (particle physics) based experiments
- New opportunities for µSR experiments
- Different experiments demand for a variety of beam characteristics:
 - DC vs pulsed
 - Momentum depends on applications: stopped beams require low momenta
- Here focus on DC low momenta muon beams
- Maintain PSI leadership in DC low momentum high intensity muon beams

The world's most intense continuous muon beam

- PSI delivers the most intense continuous low momentum muon beam in the world (Intensity Frontiers)
 - Intensity = 5x 108 muon/s, low momentum p = 28 MeV/c

590 MeV proton ring cyclotron Time structure: 50 MHz/20 ns

Power: 1.4 MW

PSI landscape

The world's most intense continuous muon beam

Muon production via pion decay

- Single pion production at 290 MeV proton energy (LAB)
- Low-energy muon beam lines typically tuned to surfaceμ⁺ at
 - ~ 28 MeV/c
- Note: surface-µ —> polarized positively charged muons (spin antiparallel to the momentum)
- Contribution from cloud muons at similar momentum about 100x smaller
- Negative muons only available as cloud muons

Initial HiMB concept: @SINQ

Initial HiMB concept: @SINQ

- Source simulation (below safety window):
 9 x 10¹⁰ surface-µ+/s @ 1.7 mA I_p
- Profit from stopping of full beam
- Residual proton beam (~1 MW) dumped on SINQ
- Replace existing quadrupoles with solenoids:
 - Preserve proton beam footprint
 - Capture backward travelling surface muons
- Extract muons in Dipole fringe field
- Backward travelling pions stopped in beam window
- Capturing turned out to be difficult :
 - Large phase space (divergence & 'source' extent)
 - Capture solenoid aperture needed to be increased, but constrained by moderator tank
- High radiation level close to target
- Due these constraints and after several iterations with different capturing elements:
 - Not enough captures muons to make an high intensity beam
 - Alternative solution: HiMB @ EH

High Muon Beam Intensity: @Main Experimental Hall

Target E

- Rotating target (1 Hz)
- Polycrystalline graphite
- 40 mm length in beam direction
- 50 kW proton beam energy deposit
- 1700 K radiation cooled
- 30 % loss of protons
- Delivers world most intense surface muon beams

HiMB @ HE

- Back to standard target to exploit possible improvements towards high intensity beams:
 - Target
 - alternate materials
 - geometry

- Beam line
 - high capture efficiency
 - · large phase space acceptance transport channel

Optimization of standard production targets

- Back to standard target to exploit possible improvements towards high intensity beams
- Target alternate materials
 - Search for high pion yield materials -> higher muon yield
 - Several materials have pion yields > 2x Carbon
 - Relative muon yield favours low-Z materials, but difficult to construct as a target
 - B₄C and Be₂C show 10-15% gain

relative μ^+ yield $\approx \pi^+$ stop density $\cdot \mu^+$ Range \cdot length $\approx n \cdot \sigma_{\pi^+} \cdot SP_{\pi^+} \cdot \frac{1}{SP_{\mu^+}} \cdot \frac{\rho_C (6/12)_C}{\rho_x (Z/A)_x}$ $\approx 2^{1/3} \cdot 2 \cdot \frac{1}{Z} \cdot \frac{1}{Z}$ $\approx \frac{1}{Z^{2/3}}$

Optimization of standard production targets

 Strategy: either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface

Target geometry

- · Comparison studies of different target geometries: Different shapes and rotation angles
- Enhancements normalised to standard target

Slanted target: towards the test

Prototype for the New Target E

- Upgrade existing graphite production target E 40 mm
 - 8° slanting angle: Measurement in forward / backward / sideways direction
 - Production and implementation feasible
 - Mechanical and thermal simulations completed and no show-stopper found
 - · Installed in week 48 (Nov. 25th, 2019)
 - · Goals
 - · Increase surface muon rates for all connected beam lines
 - · Increase safety margin for "missing" target with the proton beam

New Target E

Slanted target: 2019 test Results

- Expect ~30-60 % enhancement
- Measurements successfully done in different experimental areas in fall 2019
- Analysis still undergoing: increased muon yield CONFIRMED!

New Target E

· To be seen: impact of higher thermal stress on long term stability of target wheel

Towards the HiMB project @ PSI

Prospects

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Time schedule: **O(2025)**

The muCool project at PSI

- Aim: High-brightness low energy muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for:

μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (μΕDM, g-2...)

ightarrow Transforms a standard μ ⁺ beam into a high-brightness low-energy μ ⁺ beam

The muCool project at PSI

- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for:

μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (μΕDM, g-2...)

19

Trajectories in E and B field + gas

Working principle: 1st Stage

Experimental setup and results: 1st stage and 2 stage

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

Experimental setup and results: 1st stage

The muCool project at PSI: Status

- 1st stage + 2nd stage
- Next Step: Extraction into vacuum

Outlook

- HiMB aims at surface high intensity muon beam O(10¹⁰ muon/s)
 - Initial simulations show that such rates are feasible
 - Target optimisation test: successfully done. Increase muon rate as expected.
 - Beam optics and investigations on proton beam modifications underway
- Put into perspective the target optimisation only, corresponding to 50% of muon beam intensity gain, would corresponds to effectively raising the proton beam power at PSI by 650 kW, equivalent to a beam power of almost 2 MW without the additional complications such ad increased energy and radiation deposition into the target and its surroundings
- If the same exercise is repeated put into perspective the beam line optimisation the equivalent beam power would be of the order of several tens of MW
- muCool aims at low energy high-brightness muon beam
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³
- First two stages demonstrated independently
- Measurements and simulations agree
- Current development: combining two stages and extraction into the vacuum

Beam features vs experiment requirements

 Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

---- ~ 108 - 1010 μ/s

DC or Pulsed?

l_{beam} ~ 10¹¹ μ/s

- DC beam for coincidence experiments
 - $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

- Pulse beam for noncoincidence experiments
 - μ-e conversion

Target geometry for new target M*

- Change current 5 mm TgM for 20 mm TgM*
- 20 mm rotated slab target as efficient as Target E

5° rotated slab

20 mm effective length

ToDo

- Optimization of capturing
- Optimize final focussing
- Iterative Beam line optimization and implementation of beam monitoring and particle separator locations with max. transmission
- Minimize shielding modifications
- Particle separation
- Investigate impact on proton beam properties
- Study extraction angle
- Determine new target location
- Disposal of highly radioactive waste
- Study Mu3e setup phase space acceptance and optimize final focus properties
- Find solution with current users of Target M

Schematic of the layout in the experimental hall

HiMB Simulation

- Geant4 pion production cross sections not optimised for low energies
- Implemented our own pion production cross section into Geant4/G4beamline based on measured data and two available parametrizations (HiMB model)
- Valid for all pion energies, proton energies < 1000 MeV, all angles and all materials
- Reliable results at 10% level

- R. L. Burman and E. S. Smith, Los Alamos Tech. Report LA-11502-MS (1989)
- R. Frosch, J. Löffler, and C. Wigger, PSI Tech. Report TM-11-92-01 (1992)
- F. Berg et al., Phys. Rev. Accel. Beams 19, 024701 (2016)

HiMB model validation

- Full simulation of µE4 and piE5 beam lines starting from proton beam
- Detailed field maps available for all elements
- Very good agreement between simulation and measurements

Initial HiMB concept: @SINQ

- Source simulation (below safety window):
 - $9 \times 10^{10} \text{ surface-}\mu^{+}/\text{s} @ 1.7 \text{ mA } I_{p}$
- Profit from stopping of full beam
- Residual proton beam (~1 MW) dumped on SINQ
- Replace existing quadrupoles with solenoids:
 - Preserve proton beam footprint
 - Capture backward travelling surface muons
- Extract muons in Dipole fringe field
- Backward travelling pions stopped in beam window
- Capturing turned out to be difficult :
 - · Large phase space (divergence & 'source' extent)
 - Capture solenoid aperture needed to be increased, but constrained by moderator tank
- High radiation level close to target
- Due these constraints and after several iterations with different capturing elements:
 - Not enough captures muons to make an high intensity beam
 - · Alternative solution: HiMB @ EH

Optimization of standard production targets

 Strategy: either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface

Target geometry

Comparison studies of different target geometries: TgE for different lengths

Surface muon rate

Length [mm]	Upstream	Downstream	Side
10	1.4×10^{10}	9.0×10^{9}	1.8×10^{10}
20	1.6×10^{10}	1.2×10^{10}	5.1×10^{10}
30	1.9×10^{10}	1.1×10^{10}	8.5×10^{10}
40	1.8×10^{10}	1.1×10^{10}	1.2×10^{11}
60	1.8×10^{10}	1.2×10^{10}	2.1×10^{11}

Optimization of standard production targets

 Strategy: either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface

Target geometry

- · Comparison studies of different target geometries: Different rotation angles
- Enhancements normalised to standard target

Slanted target: 2019 test Results

- Two independent detectors
 - SciFi: 0.5x0.5 mm2 scintillating fibers coupled to SiPMs to form a grid
 - Pill: (diam.) 2 mm x (length) 2 mm scintillator coupled to Hamamatsu R9880U-110 photomultiplier

Split capture solenoids

- Two normal-conducting, radiation-hard solenoids close to target to capture surface muons
- Central field of solenoids ~0.35 T
- Field at target ~0.1 T

Solenoid beam line

- · First version of beam optics showing that large number of muons can be transported.
- · Almost parallel beam, no focus, no separator, ...
- Final beam optics under development

Experimental setup and results: 1st stage

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

Experimental setup and results: 2nd stage

- Separately longitudinal and transverse compression: PROVED
- · Very good agreement between data and simulations

Final remarks

- Astonishing sensitivities in muon cLFV channels are foreseen for the incoming future
- cLFV remains one of the most exciting place where to search for new physics
- Submitted inputs to the European Strategy Committee

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Thanks for your attention!

Optimal surface muon production

- **BUNGAU** et al., Phys. Rev. ST Accel. BEAMS **16**, 014701 (2013)
- Target: graphite
- Simulation validation: ISIS data
- For standalone muon facility: 500 MeV proton energy is the optimal energy

Variation of muon yield with proton energy at

Normalization of the muon yield to the proton energy

Muon production via pion decay

- Single pion production at 290 MeV proton energy (LAB)
- Low-energy muon beam lines typically tuned to surfaceµ+ at
 - ~ 28 MeV/c
- Note: surface -µ -> polarized positively charged muons (spin antiparallel to the momentum)
- Contribution from cloud muons at similar momentum about 100x smaller
- Negative muons only available as cloud muons

